If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6y2 = -1(10y + 2) Reorder the terms: 6y2 = -1(2 + 10y) 6y2 = (2 * -1 + 10y * -1) 6y2 = (-2 + -10y) Solving 6y2 = -2 + -10y Solving for variable 'y'. Reorder the terms: 2 + 10y + 6y2 = -2 + -10y + 2 + 10y Reorder the terms: 2 + 10y + 6y2 = -2 + 2 + -10y + 10y Combine like terms: -2 + 2 = 0 2 + 10y + 6y2 = 0 + -10y + 10y 2 + 10y + 6y2 = -10y + 10y Combine like terms: -10y + 10y = 0 2 + 10y + 6y2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(1 + 5y + 3y2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(1 + 5y + 3y2)' equal to zero and attempt to solve: Simplifying 1 + 5y + 3y2 = 0 Solving 1 + 5y + 3y2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 0.3333333333 + 1.666666667y + y2 = 0 Move the constant term to the right: Add '-0.3333333333' to each side of the equation. 0.3333333333 + 1.666666667y + -0.3333333333 + y2 = 0 + -0.3333333333 Reorder the terms: 0.3333333333 + -0.3333333333 + 1.666666667y + y2 = 0 + -0.3333333333 Combine like terms: 0.3333333333 + -0.3333333333 = 0.0000000000 0.0000000000 + 1.666666667y + y2 = 0 + -0.3333333333 1.666666667y + y2 = 0 + -0.3333333333 Combine like terms: 0 + -0.3333333333 = -0.3333333333 1.666666667y + y2 = -0.3333333333 The y term is 1.666666667y. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667y + 0.6944444447 + y2 = -0.3333333333 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667y + y2 = -0.3333333333 + 0.6944444447 Combine like terms: -0.3333333333 + 0.6944444447 = 0.3611111114 0.6944444447 + 1.666666667y + y2 = 0.3611111114 Factor a perfect square on the left side: (y + 0.8333333335)(y + 0.8333333335) = 0.3611111114 Calculate the square root of the right side: 0.600925213 Break this problem into two subproblems by setting (y + 0.8333333335) equal to 0.600925213 and -0.600925213.Subproblem 1
y + 0.8333333335 = 0.600925213 Simplifying y + 0.8333333335 = 0.600925213 Reorder the terms: 0.8333333335 + y = 0.600925213 Solving 0.8333333335 + y = 0.600925213 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + y = 0.600925213 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + y = 0.600925213 + -0.8333333335 y = 0.600925213 + -0.8333333335 Combine like terms: 0.600925213 + -0.8333333335 = -0.2324081205 y = -0.2324081205 Simplifying y = -0.2324081205Subproblem 2
y + 0.8333333335 = -0.600925213 Simplifying y + 0.8333333335 = -0.600925213 Reorder the terms: 0.8333333335 + y = -0.600925213 Solving 0.8333333335 + y = -0.600925213 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + y = -0.600925213 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + y = -0.600925213 + -0.8333333335 y = -0.600925213 + -0.8333333335 Combine like terms: -0.600925213 + -0.8333333335 = -1.4342585465 y = -1.4342585465 Simplifying y = -1.4342585465Solution
The solution to the problem is based on the solutions from the subproblems. y = {-0.2324081205, -1.4342585465}Solution
y = {-0.2324081205, -1.4342585465}
| 3(8x-1)+5x=142 | | (20-x)-8=4x-49 | | 0=y^2-6 | | 2(1-5)=3-(4+1) | | -9x/x-x^2 | | y-9=13+y | | -13=r+3+7r | | 7x+9-6x=14 | | -(7x-3)-(4x-6)+10=-3(x-1)-(13x+2)+3 | | -4(3x-6)-(-4x+6)=2x+8 | | 2x^2-24=4x | | Y=y^2-6 | | x=220-162 | | x=220/162 | | -12e=36 | | 1.7x+4-3x=2x-2.6 | | 4/-13y-7=6 | | 65-4x=16x | | x/7-4=4 | | 35-5x=-4(1-2x) | | 220=43+62+57+x | | 16x-25=0 | | 55*4=x | | y=5+20x+-16x^2 | | 5y^2-87=2 | | x(x+10)+1=-20 | | 12-34x=78 | | 8x-16=8x-16-3x | | y+15=36 | | 9e^3x-12=0 | | 3(n-13)=6 | | 7.8=d+-7.6 |